
Exam solution for Mathematics 1b (F24)
Jakob Lemvig and Steeven Hegelund Spangsdorf

May 15, 2024

[1]: from sympy import *
init_printing()
from dtumathtools import *

1 Exercise 1

Given quadratic form:

[2]: x1,x2,x3 = symbols("x_1 x_2 x_3")
xvec = Matrix([x1, x2, x3])
q = 5*x1**2 + 8*x1*x2 - 4*x1*x3 - 22*x1 + 5*x2**2 + 4*x2*x3 - 32*x2 + 8*x3**2 -␣
↪→20*x3 + 53

q

[2]:
5x21 + 8x1x2 − 4x1x3 − 22x1 + 5x22 + 4x2x3 − 32x2 + 8x23 − 20x3 + 53

1.1 a

The partial derivatives are:

[3]: qx1=diff(q,x1)
qx2=diff(q,x2)
qx3=diff(q,x3)

hence, the gradient is:

[4]: nabla_q = Matrix([qx1,qx2,qx3])
nabla_q

[4]: 10x1 + 8x2 − 4x3 − 22
8x1 + 10x2 + 4x3 − 32
−4x1 + 4x2 + 16x3 − 20

for any xxx = (x1, x2, x3) ∈ R3. The gradient can also be found by:

[5]: nabla_q = dtutools.gradient(q,[x1,x2,x3])
nabla_q

[5]:

1

 10x1 + 8x2 − 4x3 − 22
8x1 + 10x2 + 4x3 − 32
−4x1 + 4x2 + 16x3 − 20

1.2 b

The Hessian matrix is computed by:

[6]: H_q = hessian(q, [x1,x2,x3]) # or dtutools.hessian(q, [x1,x2,x3])
H_q

[6]: 10 8 −4
8 10 4
−4 4 16

This completes the answer to question b. Using the Hessian matrix, it is easy to write the quadratic
form in matrix form as:

[7]: A = S(1)/2 * H_q
b = Matrix([-22, -32, -20])
c = 53
A, b, c

[7]: 5 4 −2
4 5 2
−2 2 8

 ,

−22
−32
−20

 , 53

[8]: q_check = xvec.T * A * xvec + b.T * xvec + Matrix([c])

q_check[0].simplify()

[8]:
5x21 + 8x1x2 − 4x1x3 − 22x1 + 5x22 + 4x2x3 − 32x2 + 8x23 − 20x3 + 53

Indeed, the matrix form of q based on the Hessian matrix agrees with the given q:

[9]: q_check[0].simplify() == q.simplify()

[9]: True

1.3 c

The Hessian is a real, symmetric matrix so we know according to the spectral theorem that there
exists an orthonormal basis of eigenvectors. We find the eigenvalues and eigenvectors by:

[10]: eig = H_q.eigenvects()
eig

[10]: 0, 1,

 2
−2
1

 ,

18, 2,

11
0

 ,

−1
2
0
1

The eigenvectors associated with different eigenvalues are orthogonal to each other since the matrix
is real symmetric. However, since the algebraic multiplicity of the eigenvalue 18 is two, we need

2

to make sure that the two associated linearly independent eigenvectors are orthogonal. We use the
Gram-Schmidt procedure to obtain two orthonormal eigenvectors:

[11]: GramSchmidt(eig[1][2], True)

[11]:

√
2
2√
2
2
0

 ,

−
√
2
6√
2
6

2
√
2

3

The eigenvector associated with 0 only needs to be normalized. There are several ways to do this,
e.g.,

[12]: GramSchmidt(eig[0][2], True)

[12]: 2
3
−2

3
1
3

or,

[13]: Matrix(eig[0][2]).normalized()

[13]: 2
3
−2

3
1
3

Finally, we combine the three orthonormal eigenvectors in a basis denoted β:

[14]: beta = GramSchmidt(eig[0][2], True)[0], GramSchmidt(eig[1][2], True)[0],␣
↪→GramSchmidt(eig[1][2], True)[1]

beta

[14]:
 2

3
−2

3
1
3

 ,

√
2
2√
2
2
0

 ,

−
√
2
6√
2
6

2
√
2

3

The assoicated change-of-basis matrix Q is:

[15]: Q = Matrix([beta])
Q

[15]: 2
3

√
2
2 −

√
2
6

−2
3

√
2
2

√
2
6

1
3 0 2

√
2

3

Let’s check that Q is indeed an orthogonal matrix:

[16]: Q * Q.T

[16]: 1 0 0
0 1 0
0 0 1

3

Note that Q is not unique (not even up to multiplication by −1) as there are infinitely many ways to
obtain an orthonormal basis for the eigenspace associated with 18. Here is another change-of-basis
matrix:

[17]: V = Matrix([[S(1)/3, S(-2)/3, S(2)/3], [S(2)/3, S(-1)/3, S(-2)/3], [S(2)/3, S(2)/
↪→3, S(1)/3]])

V * V.T, H_q * V, V

[17]: 1 0 0
0 1 0
0 0 1

 ,

 6 −12 0
12 −6 0
12 12 0

 ,

1
3 −2

3
2
3

2
3 −1

3 −2
3

2
3

2
3

1
3

1.4 d

We insert xxx = (1, 2, 1) in the expresseion of ∇q which yields:

[18]: nabla_q.subs({x1:1,x2:2,x3:1})

[18]: 00
0

Since the gradient at the given point is the zero vector, then xxx = (1, 2, 1) is a stationary point. To
find all stationary points, we find all solutions to the equation system ∇q(xxx) = (0, 0, 0):

[19]: solve(list(nabla_q),[x1,x2,x3])

[19]: {x1 : 2x3 − 1, x2 : 4− 2x3}

Setting x3 = t, t ∈ R, we see that all stationary points are given by:

(x1, x2, x3) = (2t− 1,−2t+ 4, t) = (2,−2, 1)t+ (−1, 4, 0)

where t ∈ R.

1.5 e

Since the function q is a quadratic form, the line found in question d above is a line along which there
is no increase nor decrease of q. In fact, this line is (1, 2, 1) + span(v1) where v1 is an eigenvector
of 0. So, the function q is constant in the direction of v1. Remark: The Hessian is not really useful
here since:

[20]: H_q.eigenvals()

[20]: {0 : 1, 18 : 2}

1.6 f

Given x0, and restating the gradient:

4

[21]: x0 = Matrix([1, 2, 1]) + 3 * V[:, 1]
nabla_q, x0

[21]: 10x1 + 8x2 − 4x3 − 22
8x1 + 10x2 + 4x3 − 32
−4x1 + 4x2 + 16x3 − 20

 ,

−1
1
3

We carry out the gradient method to compute x10, where xn+1 = xn − α∇q(xn) for n = 0, 1, 2, . . .:

[22]: alpha = 0.02
x = x0
for n in range(1,11):

x = x - alpha * nabla_q.subs({x1: x[0], x2: x[1], x3: x[2]})
x

[22]: 0.9769415699078631.98847078495393
1.02305843009214

The gradient method converges towards (1, 2, 1) since 3 * V[:,1] belongs to the orthogonal com-
plement of the null-space of A. The gradient method progresses along this direction and intersects
the “stationary line” at the point (1, 2, 1).

2 Exercise 2

Given quadratic form:

[23]: x1, x2, x3, x4 = symbols("x_1 x_2 x_3 x_4")
q = 2 * x1 * x3 + 4 * x2 * x4
q

[23]:
2x1x3 + 4x2x4

2.1 a

The Hessian matrix is given by:

[24]: H = hessian(q, [x1, x2, x3, x4])
H

[24]:
0 0 2 0
0 0 0 4
2 0 0 0
0 4 0 0

We note that the Hessian matrix is symmetric. A symmetric matrix A that fulfills q = xxxTAxxx, where
xxx = [x1, x2, x3, x4]

T is thus:

[25]: A = S(1)/2 * H
A

5

[25]:
0 0 1 0
0 0 0 2
1 0 0 0
0 2 0 0

2.2 b

An orthogonal matrix Q that reduces the quadratic form is found as the change-of-basis matrix that
diagonalizing A:

[26]: Q, Lamda = A.diagonalize(normalize=True)
Q, Lamda

[26]:

0 −
√
2
2

√
2
2 0

−
√
2
2 0 0

√
2
2

0
√
2
2

√
2
2 0√

2
2 0 0

√
2
2

 ,

−2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 2

Denote the ith column vector of Q by qqqi, and let β = qqq1, qqq2, qqq3, qqq4.
Defining new coordinates as kkk = [k1, k2, k3, k4]

T , where kkk = QTxxx, we have q expressed in the reduced
form:

[27]: k1, k2, k3, k4 = symbols("k_1,k_2,k_3,k_4")
kvec = Matrix([k1, k2, k3, k4])
q_new = Matrix([kvec.T * Lamda * kvec])[0]
q_new

[27]: −2k21 − k22 + k23 + 2k24

2.3 c

We now consider q restricted to the set:

B = {xxx ∈ R4 | x21 + x22 + x23 + x24 ≤ 1}.

Since q : B → R is continuous on a bounded and closed domain, it has a global minimum and
maximum value by Theorem 5.2.1.

2.4 d

Extrema of q over the domain B are to be found in the stationary points in the interior of B, at the
boundary of B, or at exceptional points (see Theorem 5.2.2). Since the function is smooth, there
are no exceptional points. Hence, we must investigate the interior and the boundary. First, the
interior:

The partial derivatives are given by:

[28]: qx1 = diff(q, x1)
qx2 = diff(q, x2)

6

qx3 = diff(q, x3)
qx4 = diff(q, x4)
qx1, qx2, qx3, qx4

[28]:
(2x3, 4x4, 2x1, 4x2)

Thus, the gradient is:

[29]: nabla_q = Matrix([qx1, qx2, qx3, qx4])
nabla_q

[29]:
2x3
4x4
2x1
4x2

Alternatively, it can be found by:

[30]: nabla_q = dtutools.gradient(q, [x1, x2, x3, x4])
nabla_q

[30]:
2x3
4x4
2x1
4x2

Hence, obviuosly, the gradient equals the zero vector if and only if xxx = 0. We can check this in
Python by:

[31]: solve(list(nabla_q), [x1, x2, x3, x4])

[31]: {x1 : 0, x2 : 0, x3 : 0, x4 : 0}

So, there exists only one stationary point in the interior of q on B, and it is found at (0, 0, 0, 0).
The corresponding function value is:

[32]: q.subs({x1: 0, x2: 0, x3: 0, x4: 0})

[32]:
0

Now, investigating boundary points. We see from the given set that the boundary of B is a unit
sphere centred at the origin with a radius of 1, so all points that fulfill x21 + x22 + x23 + x24 = 1:

∂B = {xxx ∈ R4 | ∥xxx∥ = 1}.

We note that this unit sphere ∂B is invariant under QT (and Q) since QT is orthogonal and therefore
satisfies ∥Qxxx∥ = ∥xxx∥ for all xxx (see Theorem 2.6.1(vi)). Alternatively, you may argue using that QT

only causes rotation and refleksion of the coordinate system and does not alter distances. Hence,
we may use the easier new coordinates, which we above denoted by kkk, and the unit sphere is thus
described by ∥kkk∥ = k21 + k22 + k23 + k24 = 1.

Recall that q in the new coordinates was:

7

[33]: q_new

[33]: −2k21 − k22 + k23 + 2k24

Note that k1, k2, k3, k4 are squared in this expression, so k1, k2 have negative contributions, while
k3, k4 have positive contributions. Maximum of q on the sphere is thus found, firstly where k1 =
0, k2 = 0, and secondly where k4 is largest due to its larger factor, meaning that k4 = 1 while k3 = 0.
Maximum on the boundary is thus found at kkk = [0, 0, 0, 1]T with a function value of:

[34]: q_new.subs({k1: 0, k2: 0, k3: 0, k4: 1})

[34]:
2

Equivalently, a minimum is found where k3, k4 are zero and k1 is maximum, so k1 = 1, thus requiring
k2 = 0. Minimum on the boundary is thus found at (1, 0, 0, 0) with a function value of:

[35]: q_new.subs({k1: 1, k2: 0, k3: 0, k4: 0})

[35]: −2

The stationary point is seen to not be an extremum. Global extrema of q on B are hence on the
boundary as found above. We are not asked to find the location of the extremas, but they are easily
found in the standard basis using Q

[36]: Q * kvec.subs({k1: 0, k2: 0, k3: 0, k4: 1}), Q * kvec.subs({k1: 1, k2: 0, k3: 0,␣
↪→k4: 0})

[36]:

0√
2
2
0√
2
2

 ,

0

−
√
2
2
0√
2
2

which is the location of the maximum and minimum, respectively.

3 Exercise 3

Given function f : R2 → R which for (x, y) = (0, 0) is f(0, 0) = 0, and for (x, y) ∈ R2 \ (0, 0) is:

[37]: x,y = symbols("x y", real=True)
f = y**2 * cos(x) / (x**2 + y**2)
f

[37]: y2 cos (x)

x2 + y2

3.1 a

Plot for (x, y) ∈ R2 \ (0, 0):

[38]: dtuplot.plot3d(f, (x, -5, 5), (y, -5, 5))

8

[38]: <spb.backends.matplotlib.matplotlib.MatplotlibBackend at 0x71c7a1a91660>

3.2 b

First-order partial derivatives for (x, y) ∈ R2 \ (0, 0) are found to be:

[39]: f.diff(x), f.diff(y)

[39]: (
−2xy2 cos (x)

(x2 + y2)2
− y2 sin (x)

x2 + y2
, −2y3 cos (x)

(x2 + y2)2
+

2y cos (x)

x2 + y2

)

3.3 c

2nd-degree Taylor polynomial P2 of cos(x) expanded from x0 = 0:

[41]: series(cos(x), x, 0, 3).removeO()

[41]:
1− x2

2

3.4 d

Note first that f(x, x) is just a special case of f(x, y) where x = y. The limit value is then easily
computed:

9

lim
x→0

f(x, x) = lim
x→0

x2 cos(x)

x2 + x2
= lim

x→0

cos(x)

2
=

1

2

Check:

[42]: f.subs(y,x).limit(x,0)

[42]: 1

2

or (using Taylor’s limit formula):

[43]: (y**2 * series(cos(x), x, 0, 3).removeO() / (x**2 + y**2)).subs(y,x)

[43]: 1

2
− x2

4

3.5 e

The limit value:

lim
x→0

f(x, 2x) = lim
x→0

(2x)2 cos(x)

x2 + (2x)2
= lim

x→0

4x2 cos(x)

x2 + 4x2
= lim

x→0

4 cos(x)

5
=

4

5

Check:

[44]: f.subs(y,2*x).limit(x,0)

[44]: 4

5

3.6 f

The first-order partial derivatives are continuously differentiable on R2\{(0, 0)} so f is differentiable
on this domain. Since f is not continuous at (0, 0), it is not differentiable here.

4 Exercise 4

Given vector field VVV and parametrization rrr(u) of a curve K1:

[45]: x, y, z, u, t = symbols("x y z u t", real=True)
V = Matrix([-x, x*y**2, x+z])
r = Matrix([u, u**2, u +1])
V, r

[45]: −x
xy2

x+ z

 ,

 u
u2

u+ 1

where u ∈ [0, 2].

10

4.1 a

Tangent vector rrr′(u):

[46]: rd = diff(r,u)
rd

[46]: 1
2u
1

This vector is never the zero vector (and rrr is obviously injective), hence the parametrization is
regular.

4.2 b

The inner product of VVV (rrr(u)) with rrr′(u) can be carried out as a usual dot product since all elements
are real, ⟨VVV (rrr(u)), rrr′(u)⟩ = VVV (rrr(u)) · rrr′(u). Hence, we get:

[47]: innerproduct = V.subs({x: r[0], y: r[1], z: r[2]}).dot(rd)
innerproduct.simplify()

[47]:
2u6 + u+ 1

The tangential line integral
∫
K1

VVV · dsss is given by:

[48]: integrate(innerproduct, (u, 0, 2))

[48]: 284

7

4.3 c

As a parametrization K2 = ppp([0, 1]) of the straight line segment K2 from (0, 0, 1) to (2, 4, 3) we use:

[49]: xstart = Matrix([0, 0, 1])
xend = Matrix([2, 4, 3])

p = xstart + t * (xend - xstart)
p

[49]: 2t
4t

2t+ 1

where t ∈ [0, 1].

The tangent vector ppp′(t):

[50]: pd = diff(p,t)
pd

[50]:

11

24
2

The (tangential) line integral

∫
K2

VVV · dsss, where the inner product again is a dot product, is:

[51]: innerproduct2 = V.subs({x: p[0], y: p[1], z: p[2]}).dot(pd)
innerproduct2.simplify()

[51]:
128t3 + 4t+ 2

[52]: integrate(innerproduct2, (t, 0, 1))

[52]:
36

4.4 d

Looking back at the parametrization rrr(u), u ∈ [0, 2] of K1, we evaluate the (x, y) coordinates of the
end points:

[53]: r.subs({u:0}),r.subs({u:2})

[53]: 00
1

 ,

24
3

We see that K1 and K2 are two curves with the same starting and end points. Thus, VVV is not
a gradient vector field since the (tangential) line integral from (0, 0, 1) to (2, 4, 3) depends on the
path, since we got different values in questions b and c (according to Lemma 7.4.1).

Alternatively, we can arrive at the same conclusion by showing that the Jacobian matrix is not
symmetric (according to Lemma 7.3.2):

[54]: V.jacobian([x,y,z])

[54]: −1 0 0
y2 2xy 0
1 0 1

4.5 Some illustrative plots (not asked for)

[55]: K1 = dtuplot.plot3d_parametric_line(
*r, (u,0,2), show=False, rendering_kw={"color": "red"}, colorbar=False

)
K2 = dtuplot.plot3d_parametric_line(

*p, (t,0,1), show=False, rendering_kw={"color": "blue"}, colorbar=False
)
vektorfelt_V = dtuplot.plot_vector(

V,
(x, -.1, 2.1),
(y, -.1, 4.1),

12

(z, 0, 3),
n=5,
quiver_kw={"alpha": 0.5, "length": 0.05, "color": "black"},
colorbar=False,
show=False,

)

combined = K1 + K2 + vektorfelt_V
combined.legend = False
combined.show()

5 Exercise 5

Consider the function f : R2 → R given by

f(x1, x2) = x21 + x22 + x1 + 1

and the subset A ⊂ R2 given by:

A = {(x1, x2) ∈ R2 | −2 ≤ x1 ≤ 2 ∧ −1 ≤ x2 ≤ 1}.

13

5.1 a

We compute the integral
∫
A f(x1, x2) d(x1, x2) by:

[56]: x1, x2 = symbols("x_1 x_2", real=True)
f = x1**2 + x2**2 + x1 + 1
integrate(f, (x1,-2,2), (x2,-1,1))

[56]: 64

3

5.2 b

Determining the volume of the set

{(x1, x2, x3) ∈ R3 | (x1, x2) ∈ A ∧ 0 ≤ x3 ≤ f(x1, x2)}.

We first plot the graph of f :

[57]: dtuplot.plot3d(f, (x1, -2, 2), (x2, -1, 1))

[57]: <spb.backends.matplotlib.matplotlib.MatplotlibBackend at 0x71c789499780>

and note that f is positive on A. Since f is positive on A, then f resembles an elevation function.
The volume is thus equal to the integral found in question a, i.e. 64/3.

14

5.3 c

Let a > 0. Let B ⊂ R2 denote the circular disk with center at the origin and radius a:

B = {(x1, x2) ∈ R2 | x21 + x22 ≤ a2}.

Parametrizing B using polar coordinates (r, θ) as:

s(r, θ) = (r cos(θ), r sin(θ))

where r ∈ [0, a], θ ∈ [0, 2π[. Hence, we can write B as:

B = {(r cos(θ), r sin(θ)) ∈ R2 | r ∈ [0, a] ∧ θ ∈ [0, 2π[}.

[58]: r, theta = symbols("r theta", real=True)
s = Matrix([r * cos(theta), r * sin(theta)])
s

[58]: [
r cos (θ)
r sin (θ)

]
The partial derivatives of s is given by:

[59]: sr = s.diff(r)
stheta = s.diff(theta)
sr, stheta

[59]: ([
cos (θ)
sin (θ)

]
,

[
−r sin (θ)
r cos (θ)

])
and the Jacobian determinant is therefore:

[60]: Jac_det = Matrix.hstack(sr, stheta).det().simplify()
Jac_det

[60]:
r

5.4 d

To determine the value of a to 3 decimal places such that∫
A
f(x1, x2) d(x1, x2) =

∫
B
f(x1, x2) d(x1, x2)

we must compute the right-hand side’s plane integral
∫
B f(x1, x2) d(x1, x2).

Since the Jacobian determinant is non-zero in the interior of B, and since the parametrization is
regular (injective and never the zero vector on the interior of B), we can carry out the integral over
the parameter region with the Jacobian function as a correction factor.

The Jacobian function is the absolute value of the Jacobian determinant. The determinant is r and
thus always non-negative, so the Jacobian function is just:

15

[61]: Jac = r

The integrand of the plane integral of f over B:

[62]: a = symbols("a", real=True)
integrand = Jac_det * f.subs({x1: r * cos(theta), x2: r * sin(theta)}).simplify()
integrand

[62]:
r
(
r2 + r cos (θ) + 1

)
The plane integral

∫
B f(x1, x2) d(x1, x2):

[63]: int_value = integrate(integrand, (theta, 0, 2* pi), (r,0,a))
int_value

[63]: πa4

2
+ πa2

Hence,
∫
A f(x1, x2) d(x1, x2) =

∫
B f(x1, x2) d(x1, x2) happens exactly when 64/3 = πa4

2 +πa2. Thus,
we can find the value of a > 0 that results in

∫
A f(x1, x2) d(x1, x2) =

∫
B f(x1, x2) d(x1, x2) by:

[64]: sols = solve(Eq(int_value, S(64) / 3))
sols

[64]: −√
3
√
−3

√
π +

√
3
√
3π + 128

3 4
√
π

,

√
3
√
−3

√
π +

√
3
√
3π + 128

3 4
√
π

[65]: sols[0].evalf(),sols[1].evalf()

[65]:
(−1.67884978657658, 1.67884978657658)

Hence, since a > 0, we conclude that a = 1.679.

16

	Exercise 1
	a
	b
	c
	d
	e
	f

	Exercise 2
	a
	b
	c
	d

	Exercise 3
	a
	b
	c
	d
	e
	f

	Exercise 4
	a
	b
	c
	d
	Some illustrative plots (not asked for)

	Exercise 5
	a
	b
	c
	d

